
MATH20132 Calculus of Several Variables. 2020-21

Solutions to Problems 1 : Limits

Questions 1 - 4 concern the limits of functions. The ε - δ definition of
a limit is that f : U ⊆ Rn → Rm has the limit b ∈ Rm at a ∈ U iff

∀ε > 0,∃ δ > 0 : ∀x ∈ Rn, 0 < |x− a| < δ =⇒ |f(x)− b| < ε.

1. By verifying the ε - δ definition of limit show that the scalar-valued func-
tion f : R2 → R, (x, y)T 7→ x+ y has limit 5 at a = (2, 3)T .

Hint At some point in verifying the definition you assume x = (x, y)T ∈ R2

satisfies 0 < |x− a| < δ. In particular this gives two pieces of information,
namely that |x− 2| < δ and |y − 3| < δ.

Solution Let ε > 0 be given. Choose δ = ε/2. Assume x = (x, y)T satisfies
0 < |x− a| < δ in which case the coordinates of x satisfy

|x− 2| < δ and |y − 3| < δ. (1)

Then, with f(x) = x+ y and b = 5,

|f(x)− b| = |(x+ y)− 5| = |(x− 2) + (y − 3)| ≤ |x− 2|+ |y − 3|

by the triangle inequality

< 2δ by (1)

= 2 (ε/2) = ε.

Hence we have verified the definition of limx→a f(x) = b, i.e. limx→a (x+ y) =
5.

2. By verifying the ε - δ definition of limit show that the scalar-valued func-
tion g : R2 → R, (x, y)T 7→ xy + x+ y has limit 11 at a = (2, 3)T .

Hint Perhaps start by proving that

xy + x+ y − 11 = (x− 2) (y − 3) + 4 (x− 2) + 3 (y − 3) .

Deduce that if |x− 2| < δ, |y − 3| < δ and δ ≤ 1 then |xy − 6| < 8δ. Now
look at the definition of limit.
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Solution Let ε > 0 be given. Choose δ = min (1, ε/6). Assume x satisfies
0 < |x− a| < δ so

|x− 2| < δ and |y − 3| < δ. (2)

Rewrite xy + x+ y − 11 in terms of x− 2 and y − 3 :

xy + x+ y − 11 = (x− 2) (y − 3) + 4x+ 3y − 17

= (x− 2) (y − 3) + 4 (x− 2) + 3 (y − 3) .

The triangle inequality gives

|xy + x+ y − 11| ≤ |x− 2| |y − 3|+ 4 |x− 2|+ 3 |y − 3|

< δ2 + 4δ + 3δ, (3)

by (2). The δ2 factor is unnecessarily complicated yet we are assuming δ =
min (1, ε/6) ≤ 1 which implies δ2 ≤ δ in which case (3) becomes

|xy + x+ y − 11| < δ + 4δ + 3δ = 8δ.

Since also δ = min (1, ε/8) ≤ ε/8 we have

|xy + x+ y − 11| < 8δ ≤ 8
(ε

8

)
= ε.

Hence we have verified the definition of limx→a (xy + x+ y) = 6.

3. By verifying the ε - δ definition of limit show that the vector-valued func-
tion f : R2 → R2, given by(

x
y

)
7→

(
2x+ y

x− 3y

)
,

has limit (7,−7)T at a = (2, 3)T .

Note For practice I have asked you to verify the definition, not to use
any result from the course that would allow you to look at each component
separately.

Solution Let ε > 0 be given. Choose δ = ε/
√

17. Assume x = (x, y)T

satisfies 0 < |x− a| < δ so, again, |x− 2| < δ and |y − 3| < δ. With
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b = (7,−7)T consider

|f(x)− b|2 =

∣∣∣∣∣
(

2x+ y

x− 3y

)
−

(
7

−7

)∣∣∣∣∣
2

=

∣∣∣∣∣
(

2 (x− 2) + (y − 3)

(x− 2)− 3 (y − 3)

)∣∣∣∣∣
2

.

I have written this in terms of x − 2 and y − 3 since I know I can make
them small. Continue, using the definition of |...| on R2,

|f(x)− b|2 =
(
2 (x− 2) + (y − 3)

)2
+
(

(x− 2)− 3 (y − 3)
)2

= 4 (x− 2)2 + 4 (x− 2) (y − 3) + (y − 3)2

+ (x− 2)2 − 6 (x− 2) (y − 3) + 9 (y − 3)2

= 5 (x− 2)2 − 2 (x− 2) (y − 3) + 10 (y − 3)2 .

The negative sign on the middle term is a possible problem when applying
upper bounds for |x− 2| and |y − 3|. We remove this by using the triangle
inequality:

|f(x)− b|2 =
∣∣5 (x− 2)2 − 2 (x− 2) (y − 3) + 10 (y − 3)2

∣∣
≤ 5 (x− 2)2 + 2 |x− 2| |y − 3|+ 10 (y − 3)2 .

Thus
|f(x)− b|2 < 5δ2 + 2δ2 + 10δ2 = 17δ2.

Taking roots gives

|f(x)− b| <
√

17δ =
√

17

(
ε√
17

)
= ε.

Hence f has limit (7,−7)T at (2, 3)T .

Alternative solution Given x ∈ Rn, the triangle inequality gives |x| ≤∑n
i=1 |xi|. Used above with n = 2 this gives

|f(x)− b| ≤ |2 (x− 2) + (y − 3)|+ |(x− 2)− 3 (y − 3)|

≤ 2 |x− 2|+ |y − 3|+ |x− 2|+ 3 |y − 3| ,
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by further applications of the triangle inequality. Thus

|f(x)− b| ≤ 3 |x− 2|+ 4 |y − 3| .

The choice of δ = ε/7 will now suffice.

4. By verifying the ε - δ definition of limit show that the vector-valued h :
R2 → R2, given by (

x
y

)
7→
(

x+ y
xy + x+ y

)
,

has limit (5, 11)T at a = (2, 3)T .

Hint try to make use of the results used in Questions 1 and 2.

Solution Let ε > 0 be given. Choose δ = ε/
√

68 > 0. Assume 0 < |x− a| <
δ. Let b = (5, 11)T . Then

|h(x)− b|2 =

∣∣∣∣( x+ y − 5
xy + x+ y − 11

)∣∣∣∣2
= (x+ y − 5)2 + (xy + x+ y − 11)2 .

Do NOT multiply this out, Instead, use the results of Question 2, namely
if |x− 2| < δ, |y − 3| < δ and δ ≤ 1 then |xy + x+ y − 11| < 8δ. Under the
same conditions,

|x+ y − 5| = |(x− 2) + (y − 3)| ≤ |x− 2|+ |y − 3| ≤ 2δ.

Thus
|h(x)− b|2 ≤ (2δ)2 + (8δ)2 = 68δ2.

For such x we have

|h(x)− b|2 ≤ 68δ2 = 68
(
ε/
√

68
)2

= ε2.

Hence |h (x)− b| < ε and we have verified the definition of limx→a h(x) = b.

5. Assume f, g : D ⊆ Rn → R are scalar-valued functions with domain D
containing a deleted neighbourhood of a ∈ Rn. If limx→a f(x) = b ∈ R and
limx→a g(x) = c ∈ R prove that

i. limx→a (f(x) + g(x)) = b+ c,
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ii. limx→a (f(x) g(x)) = bc and

iii. limx→a f(x) /g(x) = b/c provided c 6= 0.

Hint No new ideas are required, the proofs are identical to those for functions
of one variable.

Solution Let ε > 0 be given.

i. limx→a f(x) = b and limx→a g(x) = c imply

∃δ1 > 0 : ∀x : 0 < |x− a| < δ1 =⇒ |f(x)− b| < ε/2,

∃δ2 > 0 : ∀x : 0 < |x− a| < δ2 =⇒ |g(x)− c| < ε/2.

Choose δ = min (δ1, δ2) and assume x : 0 < |x− a| < δ. For such x we
have, starting with the triangle inequality,

|(f(x) + g(x))− (b+ c)| ≤ |f(x)− b|+ |g(x)− c| < ε/2 + ε/2 = ε.

Thus we have verified the ε-δ definition of limx→a (f(x) + g(x)) = b+ c.

ii. Left to student but starts with the identity

f(x) g(x)− bc = (f(x)− b) g(x) + (g(x)− c) b.

You will need to prove that limx→a g(x) = c implies there exists δ > 0
such that if x satisfies 0 < |x− a| < δ then |g (x)| ≤ 1 + |c|.

iii. Left to student but starts by proving limx→a 1/g(x) = 1/c. This, in turn,
starts from

1

g(x)
− 1

c
= −g(x)− c

g(x) c
.

You will need to prove that limx→a g(x) = c and c 6= 0 implies there exists
δ > 0 such that if x satisfies 0 < |x− a| < δ then |g (x)| ≥ |c| /2.

The following is a corollary of Question 5.

6. Assume f : D ⊆ Rn → Rm and g : D ⊆ Rn → Rm are vector-valued
functions with domain D containing a deleted neighbourhood of a ∈ Rn. If
limx→a f(x) = b ∈ Rm and limx→a g(x) = c ∈ Rm prove that

lim
x→a

f(x) • g(x) = b • c.

Here • is the scalar or dot product of vectors.

Hint Make use of the previous question.
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Solution From the definition of the scalar product is

f(x) • g(x) =
m∑
i=1

f i(x) gi(x) .

This is a sum of products of scalar-valued functions and so the result follows
from the results on limits of scalar-valued functions in Question 5.

7. Lemma from Lecture Notes, limits along straight lines Assume
f : A ⊆ Rn → Rm is a vector-valued function with domain A containing a
deleted neighbourhood of a ∈ Rn. Assume limx→a f(x) = b. Then, for any
non-zero vector v ∈ Rn, the directional limit of f at a from the direction v
exists and further

lim
t→0+

f(a+tv) = b.

Prove this.

Hint This is a particular form of the Composite Rule for limits and so we
can follow the outline of all proofs of such results.

Start by considering the ε - δ definition of limx→a f(x) = b and

finish by verifying the ε - δ definition of limt→0+ f(a+tv) = b.

Solution Let ε > 0 be given. Then by the definition of limx→a f (x) = b
there exists δ > 0 such that

0 < |x− a| < δ =⇒ |f(x)− b| < ε. (4)

Assume 0 < t < δ/|v| then a+tv satisfies

0 < |(a+tv)− a| = |t| |v| < δ

|v|
|v| = δ.

Thus, by (4) with x = a + tv, we deduce |f(a+tv)− b| < ε. That is

0 < t < δ/|v| =⇒ |f(a+tv)− b| < ε.

Hence we have verified the definition of limx→0+ f(a+tv) = b.

The result of the previous question can be written symbolically as

lim
x→a

f (x) = b =⇒ ∀v, lim
t→0+

f (a + tv) = b. (5)
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The contrapositive can be used to prove limits do not exist.

8. Define the function f : R2 → R by

f(x) =
x2 − y2

x2 + y2
for x = (x, y)T 6= 0 and f(0) = 0.

i. Find limt→0+ f(te1) and limt→0+ f(te2) where e1 = (1, 0)T and e2 =
(0, 1)T are the two standard basis vectors for R2.

ii. Prove that f does not have a limit at 0.

Solution i For t 6= 0 we have

f(te1) =
t2 − 02

t2 + 02
= 1 so lim

t→0+
f(te1) = 1.

Similarly, for t 6= 0 we have

f(te2) =
02 − t2

02 + t2
= −1 so lim

t→0+
f(te1) = −1.

ii. The implication in (5) is that if the limit exists then all the directional
derivatives exist and are the same. We have found two different directional
limits therefore the limit of f at 0 cannot exist.

9. Lemma from lecture notes, limits along curves. Assume f : A ⊆
Rn → Rm where A contains a deleted neighbourhood of a ∈ Rn. Assume
limx→a f(x) = b exists. Assume g : (0, η)→ A \ {a} with limt→0+ g(t) = a.
Then

lim
t→0+

f(g(t)) = b.

Prove this.

Hint Question 7 is a special case of this result, so use the same method
of proof. Start by looking at the ε - δ definition of limx→a f(x) and finish
verifying the ε - δ definition of limt→0+ f(g(t)).

Solution Let ε > 0 be given. From the definition of limx→a f(x) = b there
exists δ1 > 0 such that

0 < |x− a| < δ1 =⇒ |f(x)− b| < ε. (6)

Choose ε = δ1 in the definition of limt→0+ g(t) = a to find δ2 > 0 such
that if

0 < t < δ2 =⇒ |g(t)− a| < δ1.
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We can assume δ2 ≤ η (for if δ2 > η then replace δ2 by η).

We also have the assumption that g : (0, η) → A \ {a} so, in particular,
g(t) 6= a for 0 < t < δ2. Hence

0 < t < δ2 =⇒ 0 < |g(t)− a| < δ1. (7)

Combine (7) and (6) with x = g (t), to get

0 < t < δ2 =⇒ 0 < |g(t)− a| < δ1 =⇒ |f(g(t))− b| < ε.

Hence we have verified the definition of limt→0+ f(g(t)) = b.

10. Define the function f : R2 → R by

f(x) =
(x2 − y)

2

x4 + y2
for x = (x, y)T 6= 0 and f(0) = 1.

i. Prove that limt→0+ f(tv) = 1 for every non-zero vector v.

Hint: write v = (h, k)T in order to get an expression for f(tv). Be
careful when k = 0.

ii. By considering the limit along the curve that is the image of g(t) =

(t, t2)
T

, prove that the function f does not have a limit at 0.

Hint Use the result of Question 9.

This is an example promised in the notes, of a function where the directional
limit exists and are equal for all directions but the limit does not exist. That
is

∀v, lim
t→0+

f (a + tv) = b 6=⇒ lim
x→a

f (x) = b.

That is, the converse of (5) is false.

Solution i. Follow the hint and write v = (h, k)T . There are two cases,
k 6= 0 and k = 0. In the first case, k 6= 0, we find, for t 6= 0, that.

f(tv) =

(
(th)2 − tk

)2
(th)4 + (tk)2

=
(th2 − k)

2

t2h4 + k2
.

Then f(tv) → (−k)2 /k2 = 1 as t → 0+. In the second case, when k = 0,
then for t 6= 0,

f(tv) =

(
(th)2

)2
(th)4

= 1
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so, again, f(tv)→ 1 as t→ 0+.

Hence, for all unit v we have limt→0+ f(tv) = 1, i.e. all direction limits
equal 1.

ii. For t 6= 0 (when also g (t) 6= 0),

f(g(t)) =
(t2 − t2)2

t2 + t2
= 0,

so f(g(t))→ 0 as t→ 0+.

Assume f has a limit at 0. Then by the Lemma quoted in Question 9, f
will have the same limit along all curves. Yet the limits along the two curves
(0, t)T , t > 0 and (t, t2)

T
, t > 0 are different. This contradiction means that

f has no limit at 0.

The following is a particularly important question. Make sure you at-
tempt all parts which illustrate points made in the lectures and are used in
later questions.

11. Find the following limits if they exist:

(i) lim
(x,y)→(0,0)

x4 + y4

x2 + y2
; (ii) lim

(x,y)→(0,0)

xy

x2 + y2
;

(iii) lim
(x,y)→(0,0)

x2y

x2 + y2
; (iv) lim

(x,y)→(0,0)

xy2

x2 + y4
;

(v) lim
(x,y)→(0,0)

xy2

x4 + y2
; (vi) lim

(x,y)→(0,0)

xy3

x2 + y6
.

Hint First try to show they have no limit by finding different directions (and
even different curves) along which the function has different limits. If you
cannot find any counterexamples try to prove the limit exists, normally by
applying the Sandwich Rule.

Solution i. If x = (x, y)T ∈ R2 then |x|2 = x2 + y2 and |x| , |y| ≤ |x|.
Therefore, for x 6= 0,

|f(x)| ≤ |x|
4 + |y|4

|x2 + y2|
≤ |x|

4 + |x|4

|x|2
= 2 |x|2 .

Then, by the Sandwich Rule, f(x)→ 0 as x→ 0. Hence the limit exists and
is 0.
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ii. Let
f(x) =

xy

x2 + y2

for x = (x, y)T ∈ R2, x 6= 0. If v1 = (1, 1)T /
√

2 then

f(tv1) =
t2

t2 + t2
=

1

2
,

for all t 6= 0, so limt→0+ f(tv1) = 1/2. Yet if v2 = (1,−1)T /
√

2 then

f(tv2) =
−t2

t2 + t2
= −1

2
,

for all t 6= 0, so limt→0+ f(tv2) = −1/2. Having different directional limits
along different lines implies f does not have a limit at the origin. (See
Question 7)

Graph of xy/(x2 + y2).

The red line shows the path to the origin along the x - y line, and the blue
line the x - (−y) line. There is no value that could be assigned to f(0) which
would reconcile these two different limits at 0.

iii. If x = (x, y)T ∈ R2 then |x|2 = x2 + y2 and |x| , |y| ≤ |x|. Therefore, for
x 6= 0,

|f(x)| ≤ |x|
3

|x|2
= |x| → 0

as x→ 0. Thus, by the Sandwich Rule, f(x)→ 0 , i.e. the limit exists and
is 0.
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Graph of x2y/(x2 + y2).

iv. Let

f(x) =
xy2

x2 + y4

for x ∈ R2, x 6= 0. Then f(te1) = 0 for all t 6= 0, so limt→0+ f(te1) = 0.

Yet,

f

((
t2

t

))
=

t4

t4 + t4
=

1

2
,

for all t 6= 0. Thus limt→0+ f
(

(t2, t)
T
)

= 1/2.

Different limits along different curves to the origin means that f does not
have a limit at the origin. (See Question 9.)

v. With the intention of using the Sandwich Rule bound the function from
above by a simpler function. We do this by bounding the denominator from
below by a simpler function, i.e. x4 + y2 ≥ y2, useful only if y 6= 0. For then∣∣∣∣ xy2

x4 + y2

∣∣∣∣ ≤ ∣∣∣∣xy2y2
∣∣∣∣ = |x| ≤ |x| .

where x = (x, y)T ∈ R2.

If y = 0 then f(x) = 0 which is certainly less than |x|.
So in all cases |f(x)| ≤ |x|. Thus, by the Sandwich Rule, f(x) → 0, as

x→ 0, i.e. the limit exists with value 0.

vi. Let

f(x) =
xy3

x2 + y6
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for x ∈ R2, x 6= 0. Then the two directional limits

lim
t→0+

f(te1) = 0 and lim
t→0+

f

((
t3

t

))
=

1

2
,

are different. Hence f has no limit at the origin.

The graph of this is too complicated for Mathematica to plot well near
the origin, but you should see where the function is 0 on the x-axis and 1/2
on the parabola y = x2 (the red line):

For an example of the limit of a vector -valued function we have

12. Find the limit, if it exists, of

lim
(x,y)→(0,0)

(
x2y + 1,

(xy)2

(xy)2 + (x− y)2

)T

.

Solution Let f : R2 \ {0} → R2 be given by

f(x) =

 x2y + 1

(xy)2

(xy)2 + (x− y)2

 .

The vector -valued function has a limit at a point if, and only if, each compo-
nent function has a limit at the point. So examine each component function
in turn.

• The first function (x, y)T 7→ x2y + 1 has the limit 1 at the origin.
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• The second function (
x

y

)
7→ (xy)2

(xy)2 + (x− y)2
,

has no limit at the origin. To see this, if (x, y)T = te1 = (t, 0)T then the
directional limit is 0 as t→ 0+. If (x, y)T = (t, t)T then the directional limit
is 1. Different directional limits imply no limit exists.

Since there is a component function with no limit at the origin the original
vector-valued function does not have a limit at the origin.
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Solutions to Additional Questions 1

13. By verifying the ε - δ definition show that the scalar-valued g : R3 → R,
(x, y)T 7→ x2y has limit 12 at a = (2, 3)T .

Hint Prove that

x2y−12 = (x− 2)2 (y − 3)+3 (x− 2)2+4 (x− 2) (y − 3)+12 (x− 2)+4 (y − 3) .

Deduce that if |x− 2|, |y − 3| < δ and δ ≤ 1 then∣∣x2y − 12
∣∣ < 24δ.

Solution Let ε > 0 be given. Choose δ = min (1, ε/24) and assume x = (x, y)T

satisfies 0 < |x− a| < δ. Then

|x− 2| < δ and |y − 3| < δ. (8)

To get the result in the hint you can multiply out the right hand side but,
more constructively, ask yourself how was it derived? Perhaps by replacing
x by x− 2 and y by y − 3 in the left hand side. For example,

x2y − 12 = (x− 2)2 (y − 3) + 3x2 + 4xy − 12x− 4y

= (x− 2)2 (y − 3) + 3 (x− 2)2 + 4 (x− 2) (y − 3) + 12x+ 4y − 36

= (x− 2)2 (y − 3) + 3 (x− 2)2 + 4 (x− 2) (y − 3) + 12 (x− 2) + 4 (y − 3)

Thus ∣∣x2y − 12
∣∣ < δ3 + 3δ2 + 4δ2 + 12δ + 4δ,

by (8). We are also assuming that δ ≤ 1 in which case δ2 ≤ δ and δ3 ≤ δ.
Thus ∣∣x2y − 12

∣∣ < (1 + 3 + 4 + 12 + 4) δ = 24δ.

And, since δ ≤ ε/24, ∣∣x2y − 12
∣∣ < 24 (ε/24) = ε.

Therefore we have verified the definition of limx→a x
2y = 12.

14 Verify that the vector-valued function(
x
y

)
7→

(
x+ y

x2y

)
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has limit (5, 12)T at a = (2, 3)T .

Note You are not required to verify the definition.

Solution Since we are not asked to verify the definition we can use the result
that a vector-valued function has a vector limit if, and only if, each scalar-
valued component function has the limit of the corresponding component of
the limit vector. So we need only show that

lim
x→a

(x+ y) = 5 and lim
x→a

x2y = 12.

Yet the first of these limits was the subject of Question 1, the second of
Question 13.

15. In the lectures we need to use the Cauchy-Schwarz inequality |a • b| ≤
|a| |b| and the triangle inequality |c + d| ≤ |c| + |d|, for vectors a,b, c,d ∈
Rn. This question is a recap of proofs of these results which you should already
know.

i. Prove that if a, b, c ∈ R, a > 0 and ax2 + 2bx+ c ≥ 0 for all x ∈ R then
b2 ≤ ac. When do we have equality?

ii. Starting from the true statement that

0 ≤
n∑

i=1

(ai + bix)2

for all x ∈ R, deduce the Cauchy-Schwarz inequality |a • b| ≤ |a| |b| ,
written in the form(

n∑
i=1

aibi

)2

≤

(
n∑

i=1

a2i

)(
n∑

i=1

b2i

)
.

When do we have equality?

Hint Make use of Part i.

iii. Triangle inequality. Prove that if c,d ∈ Rn then |c + d| ≤ |c|+ |d|.
Hint: make use of part iii.

iv. Prove that if c,d ∈ Rn then |c− d| ≥ ||c| − |d||.
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Solution i. Complete the square as

ax2 + 2bx+ c = a

(
x2 +

2b

a
x+

c

a

)
= a

((
x+

b

a

)2

− b2

a2
+
c

a

)
, (9)

allowable since a 6= 0. We are told this is non-negative for all x, including
x = −b/a. Thus

a

(
− b

2

a2
+
c

a

)
≥ 0. (10)

Since a > 0 we have b2 ≤ ac as required.

Claim We have b2 = ac if, and only if, there exists a solution to ax2+2bx+c =
0.

Proof (=⇒) Assume b2 = ac. Then (9) gives

ax2 + 2bx+ c = a

(
x+

b

a

)2

which has a zero at x = −b/a.

(⇐=) Assume there exists x0 : ax20 + 2bx0 + c = 0. Then by (9) and (10),

0 =

(
x0 +

b

a

)2

− b2

a2
+
c

a
≥
(
x0 +

b

a

)2

.

This can hold only if x0 = −b/a. Then ax20 + 2bx0 + c = 0 rearranges to
b2 = ac. �

ii. Expand the given inequality, so

0 ≤
n∑

i=1

(ai + bix)2 =

(
n∑

i=1

b2i

)
x2 + 2

(
n∑

i=1

aibi

)
x+

(
n∑

i=1

a2i

)
. (11)

Thus we can apply Part i with

a =
n∑

i=1

b2i , b =
n∑

i=1

aibi and c =
n∑

i=1

a2i .

The conclusion b2 ≤ ac of Part i. then becomes(
n∑

i=1

aibi

)2

≤

(
n∑

i=1

a2i

)(
n∑

i=1

b2i

)
. (12)
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We can rewrite this in terms of vectors a,b ∈ Rn. Then

|a • b|2 =

(
n∑

i=1

aibi

)2

≤

(
n∑

i=1

a2i

)(
n∑

i=1

b2i

)
by (12)

= |a|2 |b|2 .

Take positive square roots to get the required inequality.

By Part i. there is equality in (12) iff there is a solution, x0 say, for (11).
Yet the quadratic in (11) is a sum of squares and a sum of squares of real
numbers can only be zero if each square is zero. That is ai + bix0 = 0 for all
1 ≤ i ≤ n. So we have equality in (12) iff there exists λ = −x0 ∈ R : ai = λbi
for all 1 ≤ i ≤ n, i.e. a = λb.

iii. If c,d ∈ Rn then

|c + d|2 = (c + d) • (c + d) = c • c + c • d + d • c + d • d

= |c|2 + 2c • d + |d|2

≤ |c|2 + 2 |c • d|+ |d|2

≤ |c|2 + 2 |c| |d|+ |d|2 by part ii,

= (|c|+ |d|)2 .

Take positive square roots to get the required inequality.

iv. If c,d ∈ Rn then

|c| = |c− d + d| ≤ |c− d|+ |d|

by part iii. Simply rearrange as |c− d| ≥ |c| − |d|. Yet, by swapping c and
d, |c− d| = |d− c| ≥ |d| − |c|, by result just proved. Thus

|c− d| ≥ |c| − |d| and |d| − |c| ,

which can be summed up in the one inequality |c− d| ≥ ||c| − |d||.
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